Tratamento térmico T4: solubilização e envelhecimento de ligas Al3,5%Cu

Filipi Damasceno Vianna — Edison Luis Ribeiro filipi@pucrs.br

zetur@zetur.com.br

Lucas Luiz Reckziegel lucakzlz@hotmail.com

Porto Alegre, julho de 2006

Sum'ario

In	Introdução			
1	Fundamentação Teórica		p. 4	
	1.1	Processos de fundição de alumínio	p. 4	
	1.2	Homogenização	p. 4	
	1.3	Solubilização e Envelhecimento	p. 5	
2	Ma	terial	p. 7	
3	Procedimento			
	3.1	Obtenção dos lingotes	p. 8	
	3.2	Macrografia	p. 10	
	3.3	Tratamento térmico	p. 11	
4	Micrografia		p. 13	
C	Conclusão			
\mathbf{R}_{0}	Referências			

Introdução

O alumínio é um metal leve, macio porém resistente, de aspecto cinza prateado; e fosco, devido à fina camada de oxidação que se forma rapidamente quando exposto ao ar. O alumínio não é tóxico (como metal), não-magnético, e não cria faíscas quando exposto à atrito. É muito maleável, muito dúctil e apto para a mecanização e para a fundição, além de ter uma excelente resistência à corrosão e durabilidade devido à camada protetora de óxido.

A liga de alumínio utilizada nos experimentos descritos neste relatório é a liga AA 295.0. Esta liga caracteriza-se por apresentar média resistência, boa usinabilidade. Baixa resistência à corrosão. Fundição em areia.

Este relatório detalha os procedimentos de fundição, homogenização, solubilização e envelhecimento para a liga de alumínio AA 295.0 (Al + 3,5% Cu). Descrevendo desde o procedimento de obtenção dos lingotes, a fusão, a solificação e a análise térmica, passando pelas macro e micrografia até o tratamento térmico.

Para tanto, começaremos com uma breve fundamentação teórica, seguida da descrição dos procedimentos realizados.

1 Fundamentação Teórica

1.1 Processos de fundição de alumínio

Existem diferentes processos para fundição de alumínio. Dentre eles:

- Fundição em molde permanente
- Fundição por gravidade
- Fundição em areia
- Fundição sob pressão
- Fundição centrífuga
- Fundição contínua

Nas experiências descritas neste relatório, serão utilizados os processos de fundição por gravidade (em molde de aço) e fundição em areia.

Na fundição em areia, o molde é composto de areia misturada com um agente aglomerante apropriado, na forma desejada para o lingote. O metal é vazado no molde e após sua solidificação o molde é quebrado para remover o lingote.

1.2 Homogenização

É realizado em temperaturas em torno de 500°C (de 300°C a 400°C), dependendo da liga, e tem a função de remover ou reduzir as segregações (figura 1, produzir estruturas estáveis e controlar certas características metalúrgicas, como propriedades mecânicas, tamanho de grão, estampabilidade, entre outras.

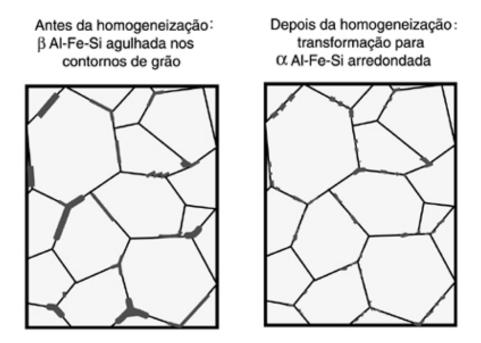


Figura 1: Estrutura metalográfica antes e depois da homogenização.

1.3 Solubilização e Envelhecimento

Dá às ligas que respondem a esse tratamento térmico uma maior resistência mecânica. O processo é o seguinte:

- 1. O metal é aquecido uniformemente até cerca de 500°C. A temperatura exata depende de cada liga. O aquecimento ocasiona a dissolução dos elementos de liga na solução sólida (tratamento de solução);
- 2. Segue-se um resfriamento rápido, geralmente em água, que previne temporariamente a precipitação dos elementos da liga. Esta condição é instável. Gradualmente, os constituintes precipitam-se de uma maneira extremamente fina (somente visível por potentes microscópios), alcançando o máximo efeito de endurecimento (envelhecimento). Em algumas ligas isto ocorre espontaneamente depois de alguns dias (envelhecimento natural). Outras requerem um reaquecimento por algumas horas a cerca de 175C (tratamento de precipitação).

As chapas são normalmente tratadas num banho de sal fundido, que possui alta taxa de calor e fornece suporte ao metal, prevenindo possíveis deformações em altas temperaturas. Fornos com circulação de ar forçado são geralmente utilizados para perfis extrudados, tubos, forjados e peças fundidas.

Entre os efeitos de um tratamento térmico completo estão um aumento substancial no limite de resistência à tração e uma redução da ductilidade. Normalmente, o tratamento térmico é precedido de uma operação de conformação severa, se for necessária. A maior parte das conformações podem ser feita antes do tratamento de solução, com um acerto posterior para corrigir distorções não previstas que possam ocorrer durante o resfriamento. Porém, preferencialmente, a conformação deve ser feita imediatamente após o tratamento de solução, antes do envelhecimento. Quando esta conciliação for difícil, é possível retardar o envelhecimento mantendo os componentes resfriados. Essa técnica é freqüentemente aplicada em rebites para a indústria de aviação.

$2 \quad Material$

- Ligas de alumínio 3,5%CU, 12% Si e alumínio puro
- Forno tipo mufla
- Termopares e multiteste
- Água aquecida a 100°C
- Bancada metalográfica e capela de exaustão de gases
- $\bullet\,$ Reagente: HF 5% em água
- Durômetro (Brinell)
- Microscópio ótico
- Cut-off refrigerado

$\it 3 \quad Procedimento$

3.1 Obtenção dos lingotes

Foram usadas três diferentes ligas de alumínio. Alumíno comercialmente puro, alumínio + 3,5% cobre e alumínio + 12% silício. Após um aquecimento prévio do forno, todas as ligas foram fundidas separadamente até ficarem completamente líquidas.

Cada um das ligas fundidas foram vazadas em molde de areia e em molde de aço ABNT 1020. Todos os moldes possuíam termopares para obtenção das curvas de resfriamento de cada liga.

Nas figuras 2 3 e 4, observamos, em cada uma das figuras sempre duas curvas. Em todos os gráficos, a curva superior foi obtida medindo o resfriamento nos moldes de areia, enquanto a curva inferior foi obtida medindo o resfriamento nos moldes de aço.

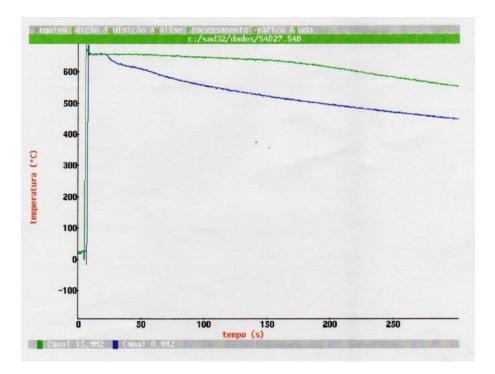


Figura 2: Gráfico temperatura × tempo para o alumínio puro.

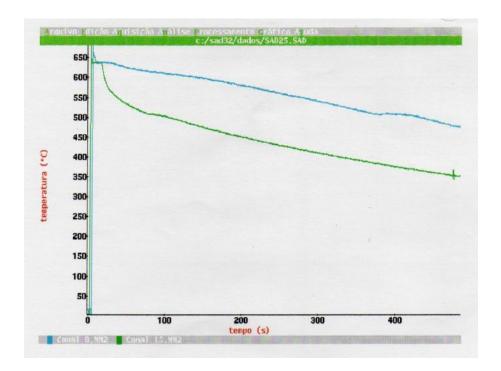


Figura 3: Gráfico temperatura \times tempo para a liga Al + 3,5% Cu.

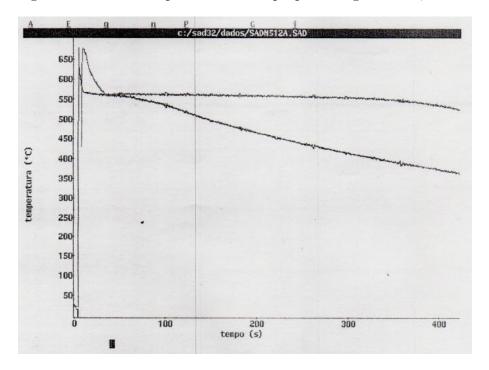


Figura 4: Gráfico temperatura \times tempo para a liga Al + 12% Si.

Isso nos leva a concluir que o tempo de solidificação nos moldes de areia foi muito maior que nos moldes de aço.

No perfil de temperatura × tempo da placa em molde de areia, para alumínio comercialmente puro (figura 2), observa-se que o intervalo de tempo até o o final da solidificação é de aproximadamente 500 segundos, mostrando que a capacidade de extração e absorção

do molde é pequena, característico de materiais refratários. No caso do alumínio vazado em molde de aço, o tempo até o final da solificação é de aproximadamente 150 segundos, evidenciando a maior capacidade de extração e absorção por parte do molde.

Para o alumínio +3.5% cobre (figura 3), o tempo de solidificação em molde de areia foi de 400 segundos, enquanto no molde de aço o tempo de solidificação foi de 100 segundos.

Para o alumínio + 12% silício (figura 4) os tempos de solidificação foram de 400 segundos para o molde de areia e 150 segundos para o molde em aço, aproximadamente.

3.2 Macrografia

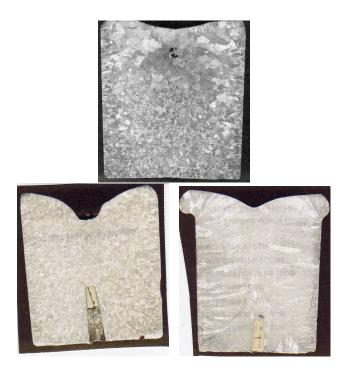


Figura 5: Metalografia dos lingotes vazados em moldes de aço.

O próximo passo foi cortar os lingotes para posterior realização da macrografia. Os lingotes foram seccionados transversalmente, para a analise de sua macroestrutura.

Para a macrografia, a superfície a ser analisada foi lixada com adição de água destilada com lixas de granulação até 600. Foi realizado ataque químico com HF 5% em água.

Nas amostras vazadas em areia (figura 6), observa-se uma macroestrutura mais grosseira, com grãos nitidamente maiores, devido ao resfriamento lento.

Figura 6: Metalografia dos lingotes vazados em moldes de areia.

3.3 Tratamento térmico

Foi realizado o tratamento térmico de solubilização/envelhecimento. Ligas tratadas por esse processo apresentam uma maior resistência mecânica e maior dureza.

O metal foi aquecido uniformemente até cerca de 500°C, sendo que a temperatura exata varia para cada uma das ligas utilizadas. O aquecimento ocasiona a dissolução dos elementos de liga na solução sólida.

Segue-se um resfriamento rápido, geralmente em água, que previne temporariamente a precipitação dos elementos de liga. Esta condição é instável. Gradualmente, os constituintes precipitam de maneira extremamente fina (vísivel em microscópio eletrônico de varredura - MEV), alcançando máximo efeito de endurecimento (envelhecimento). Em algumas ligas isso ocorre naturalmente após alguns dias (envelhecimento natural). Outras requerem um reaquecimento por algumas horas até cerca de 175°C (tratamento de precipitação).

Entre os efeitos do tratamento térmico completo estão um aumento substancial no limite de resistência à tração e uma redução da ductilidade.

Após o tratamento térmico, foi medida a dureza da peça, durante alguns dias consecutivos para observar o aumento da dureza, obtida através do processo de envelhecimento

apresentadas na tabela 1 e graficadas na figura 7.

dia	Dureza (Brinnell)
primeiro dia (sem tratamento térmico)	66,6
segundo dia	71
terceiro dia	75
quarto dia	77
quinto dia	82

Tabela 1: Durezas da amostra durante envelhecimento

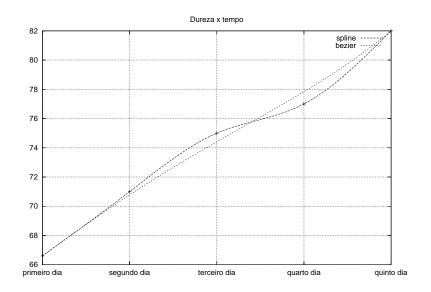


Figura 7: Gráfico dureza \times tempo.

4 Micrografia

A posição para representar a micrografia foi a metade da distância entre a interface metal/molde e o centro da peça.

Para preparar a amostra foi realizado um lixamento lixas de granulações 200, 300, 400, 600 e por fim 1200. Após isso foi realizado polimento metalográfico (com adição de alumina) e ataque químico com HF 5% para evidenciar os constuíntes da liga.

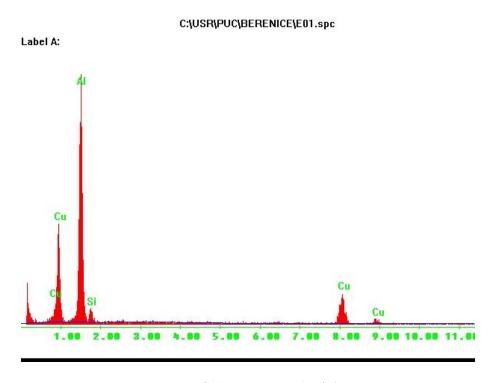


Figura 8: EDS da amostra de AA 295.0.

A micrografia foi realizada em um microscópio eletrônico de varredura, equipado com espectrômetro de energia dispersiva (EDS) de raios X. O que possibilitou a análise apresentada na figura 8. Onde podemos perceber a grande quantidade cobre na amostra de alumínio.

Na figura 9 com aumento 534×, observemos a distribuição homogênea dos precipitados

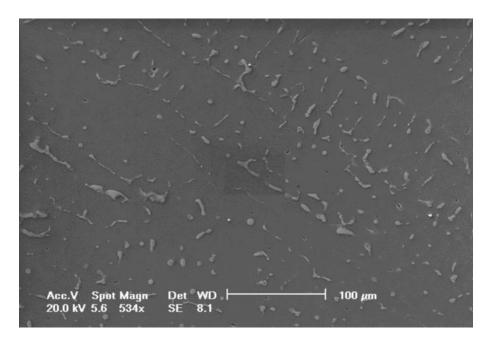


Figura 9: Distribuição homogênea dos precipitados endurecedores de ${\rm Al_2Cu}$.

endurecedores de Al_2Cu . E com um maior aumento (4270×) apresentado na figura 10 podemos observar com detalhes o precipitado de Al_2Cu , que a parte mais clara da imagem.

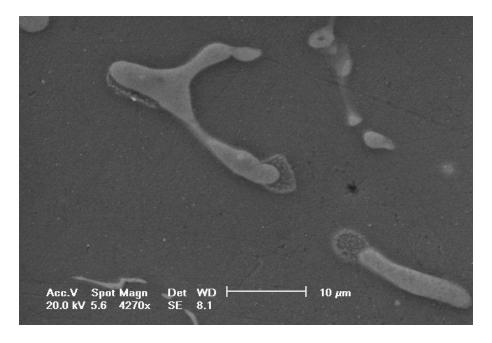


Figura 10: Detalhe do precipitado endurecedor.

$Conclus\~ao$

Relacionando as curvas de solidificação das amostras com a macrografia obtida, podemos concluir que nos moldes de areia, que apresentaram o resfriamento mais lento, obteve-se uma macro estrutura mais grosseira, com grãos maiores. Ao passo que, com o resfriamento mais rápido obtido com os moldes de aço, a macrografia revelou um refinamento maior com grãos menores e melhor distribuídos.

Analisando os resultados dos ensaios de dureza, ao longo do tempo, podemos observar o aumento da dureza após a homogenização, decorrente mudança de β para α , reduzindo as tensões nos contornos de grão. Observamos também o aumento da dureza com envelhecimento da peça.

E podemos observar na microestrutura da amostra, como o tratamento térmico homogeneizou a microestrutura, observando a disposição homogênea dos precipitados endurecedores nos contornos de grão.

Referências

- [1] GOMES, M.; FILHO, E. B. *Propriedades e uso de Metais não Ferrsos*. São Paulo: Associação Brasileira de Metais, 1989.
- [2] BÄCKER, L.; CHAI, G.; TAMMINEN, J. Solidification Characteristics of Aluminium Alloys. USA: AFS/Skanaluminum, 1990.
- [3] METALS Handbook. [S.l.]: Pocket Edition.